Parameter assessment of Fe-Cr system at equilibrium state by ThermoCalc
CME 572 Advanced Thermodynamic
4/29/2022
Lu Yingjie

Define the binary system
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Calculation of the phase diagram

(a) After defining the system as Fe-Cr binary system, start up the T-X calculation by creating
new successor for equilibrium calculation. Based on the Gibbs phase rule for 2D plots,
F=C-P+1, C=2 for a binary system, the maximum degree of freedom is 2 in single phase
region. Thus, only two condition variables can be defined. In this case, the variables are
set as temperature and mass percent of Cr, the pressure is consistent as 1 atmospheric.
System size is set as 1 mole for easy calculation. X-axis is defined as mass percent of Cr,
range from O to 100 linearly. Y-axis is defined as Kelvin’s temperature, range form room
temperature, i.e., 298K to 3000K linearly. The setup is shown in the snapshot below.
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Next start up a plot renderer to define the parameters for phase diagram. The magnitude of tie-
lines’ density is the highest. To show the stable phase only. No information about sublattice or
axis quantity will be displayed in the phase diagram. The definition of x-axis and y-axis remain
unchanged, except the temperature top limit is reduced to 2500K. The setup is shown in the
snapshot below.
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(b) Phase diagram is shown below.
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(c) The highest melting point is 2179.99K when Cr is 100wt%. The lowest melting point is
1788.80K when Cr is 19.96wt%. For unary systems, melting point of pure Fe is
1810.86K when Cr is Owt%, melting point of pure Cr is 2179.99K when Cr is 100wt%.

(d) The intermediate phase in this system is the sigma phase.

(e) At room temperature the stable phase for Fe is BCC_A2 phase, for Cr is BCC_A2#2
phase. These two phases have the same lattice structure but different compositions, also,
they repel each other at this equilibrium state.

Calculation of Gibbs energy

(a) The condition definitions of the system remain the same. In this case, Gibbs free energy
of one phase is a function of composition. Therefore, the calculation type is set as “one
axis”, and the variable is mass percent of Cr, range from 0 to 100 linearly.
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To plot the all-phase G-X curves, the Y-axis variable is set as Gibbs energy per mole for
all phases. Since the Gibbs energy data of each phase has been relative to the “standard
element reference” (SER) in the CALPHAD database?, the SER can remain uncheck. The
legend can be set as “stable phases” or “axis quantity”, the difference is that the former
setting shows the Gibbs energy of the two-phase region, but the latter setting doesn’t.
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To plot the separate phases G-X curves, the Y-axis variable is set as no normalized Gibbs
energy for all phases. The Gibbs energy value of each stable phase same as the value in
all-phase G-X curves because the system size is 1 mole. The Gibbs energy curves of
unstable phase are plotted as straight lines with pseudo values.
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In (b)-(d) and (f), the plots above left are all-phase G-X curves, above right show an
enlarged area of the curves. the plots below left are separate-phase G-X curves, below
right show an enlarged area of the curves. In (e), the plots above are all-phase G-X curves
denoted by two types of legends, the plots below are separate-phase G-X curves denoted
by the two corresponding types of legends.

(b) G-X curves at the highest melting point (2179.9K)



Gibbs energy of all phases [J/mol]

Gibbs energy of all phases [J/mol]

Gibbs energy of all phases [J]

-1.2E5

-1.25E5 N
S
— Luip 1 2269P%
LIQUID + BCC_A2 A
-1.3E5 — BCCAZ AN
227€5 s N
.
1 5Es E . Common
3 N
2 ~ tangent
2 207205
§
41485 £
= -
5 BCC_A2
1 4565 ;g’ -12274ES
2
2
o K
A15E5
1907685 2 [ BCC_A2
P L H H L
P liquid P + liquid
155E5 12277C8 e i H
10 20 30 0 50 50 70 80 90 100 —t T
Mass percent Cr AN Mass percent Cr
=a
0EO0
— Liaup
B —  LlQuiD+ BCC_A2
— BecA2
4E4 120685
Laun
LIQUID » BCC_A2
1208055 i
-6E4
41.22785
=
BEd @ 1.2271E5
] /
£
o
T 22nes Common
< /
€5 5 tangent /
2 1227388 /
§ / BCC_A2
2
1285 4_1%;1_21"1&?
41207585
1485 BCC_A2
1.227655 L
+ liquid
122775 liquid
-1.6ES ‘
0 10 20 30 40 50 60 70 80 90 100 9953 9994 9995 9995 9997 9993 9999 10000
A Mass percent Cr A Mass percent Cr
-90000
— Beca2
—  LiouID + BCC_A2
— uoup
\
-95000 Common
109845
tangents
T
E
2 1.0086E5 BCC A2
1 i -
100000 ] -
£ + liquid
T
2 -
2 -10988E5
8 ] .--
g -
P
|
105000 o}
1083E5
-110000
0

Mass percent Cr

20
/A Mass percent Cr



0EO0

-2E4
2 44
'3
@

0
@
<
Q
T
6 64
>
o
o
[
&
@
0
8
5 o=

185

1.2E5

— BCC_A2
—  LiQUID + BCC_A2
— Lauip

0 10 20 30 40 50 60 70 80 90

100
Mass percent Cr

(d) G-X curves at 498K
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(e) G-X curves at 298K
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At 2179.9K, the lowest Gibbs energy curve is the curve of liquid phase. It has an
intersection point with the curve of BCC_A2 when the composition of the system is
100wt%Cr.

At 1788.8K, the lowest curve is the curve of BCC_A2 phase. This curve has an
intersection point with the liquid Gibbs energy curve when the composition is around
20wt%Cr.

At 498K, the lowest Gibbs energy curve is the curve of BCC_A2 phase when the
composition is smaller than 1.75wt%Cr and is the curve of BCC_A2#2 phase when the
composition is larger than 99.12wt%Cr. When the composition is in between of these two
values, this region is the miscibility gap, the lowest curve is the common tangent line.

At 298K, the lowest Gibbs energy curve is the common tangent line in the entire
composition range of Cr.

At 1000K, intermediate phase sigma_D8B exist when the composition of the system is
between 41.7-48.7wt%Cr. The lowest curve is the curve of BCC_A2 phase between 0-
29.36Wt%Cr, is the common tangent of BCC_A2 and sigma_D8B between 29.36-
41.7wt%Cr, is the curve of sigma_D8B between 41.7-48.7wt%Cr, is the common tangent
of sigma_D8B and BCC_AZ2 between 48.7-63.79wt%Cr, is the curve of BCC_A2 when
the composition is larger than 63.79wt%Cr.

The corresponding phases to the lowest Gibbs energy curves are labeled in the figures for
different temperatures.

In the miscibility gap, AG i, = AGES, + AGI%Y = a X, X, + RT(X;InX; + X,1nX,)
(1), using the regular solution model.




Calculations of activities

(a) Start up a new branched calculation by select the “plot renderer” using the same G-X
setup parameters. This time set two Y-axes with activity of Cr and Fe refer to phase
BCC_AZ2 separately, set X-axis as the mole fraction of Cr. When the two components are
completely miscible in the phase, the a-X curve is a continuous curve with the slope of
each point on the curve equal to the activity coefficient y of the selected component.
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(b) a-X curves at 498K
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When the composition of the system is smaller than 0.019mol%Cr (BCC_AZ2 phase) or
greater than 0.99mol%Cr (BCC_A2#2 phase), the two components are completely
miscible, both can be considered as dilute solutions. At BCC_AZ2 phase, Cr is the solute
and Fe as the solvent. The slop of the segment of the red a-X curve in this composition
region is greater than 1, means that the system exhibits a positive departure from the ideal
solution at this phase. At BCC_A2#2 phase, Fe is the solute and Cr is the solvent. Based
on the Henry’s law: chirrg1 are = Yre(1 — X¢,), the yp,, i.e., the tangent of are-Xcr curve

when Xz, — 0 is significantly greater than 1. So, at this phase, the system exhibits a
positive departure as well.
In the two-phases region, i.e., miscibility gap, use partial molal molar excess Gibbs free

energy AGX to determine the activity of a component. According to the formula AG; =

AGpix + dAdGXmi" (1 — X;) (2 and the equation of AG,,;, 1), AG, = AG, = Auc, can be
1

calculated. Also, as Ay, = AG® + AGI?€%! (3) and AG!e?! = RT InX, @), AGZ can be
calculated by integrating (1)2)3)4) four equations and the result is AGES = a,X32.
Hence, if a, is positive, this partial molal molar excess Gibbs free energy of Cr is
positive, the relationship between these two components is repulsive and the system

exhibits a positive departure from the ideal solution. Same process for Fe.
(c) a-X curves at the lowest melting point (1788.8K)
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With respect to the guidelines, it’s clear to see that at this temperature, the system
exhibits positive departure from the ideal solution at the BCC_A2 phase.

References:

1. https://tsapps.nist.gov/publication/get pdf.cfm?pub id=918377
2. https://ntrs.nasa.gov/api/citations/19990116716/downloads/19990116716.pdf



https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=918377
https://ntrs.nasa.gov/api/citations/19990116716/downloads/19990116716.pdf

